379 research outputs found

    Networks of WRKY transcription factors in defense signaling

    Get PDF

    Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance

    Get PDF
    Resistance gene-dependent disease resistance to pathogenic microorganisms is mediated by genetically separable regulatory pathways. Using the GeneChip Arabidopsis genome array, we compared the expression profiles of approximately 8,000 Arabidopsis genes following activation of three RPP genes directed against the pathogenic oomycete Peronospora parasitica. Judicious choice of P. parasitica isolates and loss of resistance plant mutants allowed us to compare the responses controlled by three genetically distinct resistance gene-mediated signaling pathways. We found that all three pathways can converge, leading to up-regulation of common sets of target genes. At least two temporal patterns of gene activation are triggered by two of the pathways examined. Many genes defined by their early and transient increases in expression encode proteins that execute defense biochemistry, while genes exhibiting a sustained or delayed expression increase predominantly encode putative signaling proteins. Previously defined and novel sequence motifs were found to be enriched in the promoters of genes coregulated by the local defense-signaling network. These putative promoter elements may operate downstream from signal convergence points

    OsWRKY IIa Transcription Factors Modulate Rice Innate Immunity

    Get PDF
    WRKY transcription factors regulate diverse plant processes including responses to biotic stresses. Our previous studies indicate that OsWRKY62, an OsWRKY IIa subfamily member, functions as a negative regulator of the rice defense against Xanthomonas oryzae pv. oryzae. Here, we report that a large inverted repeat construct designed to knock down the expression of the four OsWRKY IIa subfamily members (OsWRKY62, OsWRKY28, OsWRKY71, and OsWRKY76) leads to overexpression of all four genes and disease resistance in some transgenic plants. These phenotypes are stably inherited as reflected by progeny analysis. A pathogenesis-related gene, PR10, is up-regulated in plants overexpressing the OsWRKY IIa genes. These results suggest that OsWRKY IIa proteins interact functionally to modulate plant innate immunity

    Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of <it>cis</it>-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression.</p> <p>Findings</p> <p>We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using <it>in silico </it>prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes.</p> <p>Conclusions</p> <p>Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression.</p

    Natural history of Arabidopsis thaliana and oomycete symbioses

    Get PDF
    Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NBLRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector

    Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis

    Get PDF
    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses

    Characterization of wound responsive genes in Aquilaria malaccensis.

    Get PDF
    We report on the isolation and characterization of several genes responsive to wounding in the tropical endangered tree Aquilaria malaccensis. Wounding triggers the formation of a fragrant substance inside the tree stem. Deduced amino acid of the cloned sequences exhibited sequence similarities to their respective homologs: transcription factors of the WRKY gene family (AmWRKY) and β-1,3-glucanase (AmGLU). A homolog to phenylalanine ammonia-lyase (AmPAL) from previous work was also included. All cDNA sequences were of partial lengths. We studied their expression profiles in a wounding-stress experiment. Mechanical wounding induces AmWRKY in an early response to wounding (3 h), and elevates AmPAL and AmGLU expressions after 16 h. It is possible that AmWRKY mediates early wounding response while AmPAL mediates response to fungal infection by co-inducing AmGLU. Their homologs in other plants are known to inhibit fungal growth. Our data provide the first insight into the mechanisms of wounding responses in Aquilaria
    corecore